Aluminum Casting Inspection using Deep Object Detection Methods and Simulated Ellipsoidal Defects

RL1, Publisher: Machine Vision and Applications, Link>


Domingo Mery


In the automotive industry, light-alloy aluminum castings are an important element for determining roadworthiness. X-ray testing with computer vision is used during automated inspections of aluminum castings to identify defects inside of the test object that are not visible to the naked eye. In this article, we evaluate eight state-of-the-art deep object detection methods (based on YOLO, RetinaNet, and EfficientDet) that are used to detect aluminum casting defects. We propose a training strategy that uses a low number of defect-free X-ray images of castings with superimposition of simulated defects (avoiding manual annotations). The proposed solution is simple, effective, and fast. In our experiments, the YOLOv5s object detector was trained in just 2.5 h, and the performance achieved on the testing dataset (with only real defects) was very high (average precision was 0.90 and the F1 factor was 0.91). This method can process 90 X-ray images per second, i.e. ,this solution can be used to help human operators conduct real-time inspections. The code and datasets used in this paper have been uploaded to a public repository for future studies. It is clear that deep learning-based methods will be used more by the aluminum castings industry in the coming years due to their high level of effectiveness. This paper offers an academic contribution to such efforts.

0 visualizaciones

Entradas Recientes

Ver todo

RL2, Publisher: Journal of Machine Learning Research, Link> AUTHORS Jorge Pérez, Pablo Barceló, Javier Marinkovic ABSTRACT Alternatives to recurrent neural networks, in particular, architectures bas

RL2, Publisher: https://github.com/pdm-book/community Link> AUTHORS Marcelo Arenas, Pablo Barceló, Leonid Libkin, Wim Martens, Andreas Pieris ABSTRACT This is a release of parts 1, 2, and 4 of the