Buscar

COMPARISON OF METHODS FOR BASS LINE ONSET DETECTION

RL1, Publisher:, Link>


AUTHORS

Gabriel Duran, Patricio de la Cuadra, Domingo Mery


ABSTRACT

In popular music, bass line tends to include relevant infor mation about the chord sequence and thus segmenting musical audio data by bass notes can be used as a mid-level step to improve posterior higher level analysis, as chord detection and music structure analysis. In this paper, we present a comparison between four methods for detecting bass line onsets. The first method uses a multipitch detection algorithm to find the lowest note boundaries. The second method searches spectral differences in a low frequency range. The third uses Convolutional Neural Networks (CNN) and the fourth Recurrent Neural Networks (RNN). These methods are trained and tested on a MIDI rendered audio database, and standard evaluation metrics for detection problems are used, as well as a temporal accuracy for each method. The results are compared to other onset detection systems showing that the deep learning based methods have better performance and time accuracy. We believe that our work comparing standard approaches provides a useful insight on how onset detection methods can be adapted to specific kind of onsets.

0 visualizaciones

Entradas Recientes

Ver todo

RL2, Publisher: Journal of Machine Learning Research, Link> AUTHORS Jorge Pérez, Pablo Barceló, Javier Marinkovic ABSTRACT Alternatives to recurrent neural networks, in particular, architectures bas

RL2, Publisher: https://github.com/pdm-book/community Link> AUTHORS Marcelo Arenas, Pablo Barceló, Leonid Libkin, Wim Martens, Andreas Pieris ABSTRACT This is a release of parts 1, 2, and 4 of the