Evaluating Interactive Comparison Techniques in a MulticlassDensity Map for Visual Crime Analytics

RL1, Publisher:, Link>


Lukas Svicarovic, Denis Parra, María Jesús Lobo


Techniques for presenting objects spatially via density maps have been thoroughly studied, but there is lack of research on how to display this information in the presence of several classes, i.e., multiclass density maps. Moreover, there is even less research on how to design an interactive visualization for comparison tasks on multiclass density maps. One application domain which requires this type of visualization for comparison tasks is crime analytics, and the lack of research in this area results in ineffective visual designs. To fill this gap, we study four types of techniques to compare multiclass density maps, using car theft data. The interactive techniques studied are swipe, translucent overlay, magic lens, and juxtaposition. The results of a user study (N=32) indicate that juxtaposition yields the worst performance to compare distributions, whereas swipe and magic lens perform the best in terms of time needed to complete the experiment. Our research provides empirical evidence on how to design interactive idioms for multiclass density spatial data, and it opens a line of research for other domains and visual tasks.

1 visualización

Entradas Recientes

Ver todo

RL2, Publisher: Journal of Machine Learning Research, Link> AUTHORS Jorge Pérez, Pablo Barceló, Javier Marinkovic ABSTRACT Alternatives to recurrent neural networks, in particular, architectures bas

RL2, Publisher: https://github.com/pdm-book/community Link> AUTHORS Marcelo Arenas, Pablo Barceló, Leonid Libkin, Wim Martens, Andreas Pieris ABSTRACT This is a release of parts 1, 2, and 4 of the