X-ray Testing

RL1, Publisher:, Link>


Domingo Mery, Christian Pieringer


X-ray testing has been developed for the inspection of materials or objects, where the aim is to analyze—nondestructively—those inner parts that are undetectable to the naked eye. Thus, X-ray testing is used to determine if a test object deviates from a given set of specifications. Typical applications are the inspection of automotive parts, quality control of welds, baggage screening, analysis of food products, inspection of cargos, and quality control of electronic circuits. In order to achieve efficient and effective X-ray testing, automated and semi-automated systems based on computer vision algorithms are being developed to execute this task. In this book, we present a general overview of computer vision approaches that have been used in X-ray testing in the last decades. In this chapter, we offer an introduction to our book by covering relevant issues of X-ray testing.

0 visualizaciones

Entradas Recientes

Ver todo

RL2, Publisher: Journal of Machine Learning Research, Link> AUTHORS Jorge Pérez, Pablo Barceló, Javier Marinkovic ABSTRACT Alternatives to recurrent neural networks, in particular, architectures bas

RL2, Publisher: https://github.com/pdm-book/community Link> AUTHORS Marcelo Arenas, Pablo Barceló, Leonid Libkin, Wim Martens, Andreas Pieris ABSTRACT This is a release of parts 1, 2, and 4 of the