Publisher: Elsevier, Data in Brief  Link>


The COVID-19 pandemic has underlined the need for reliable information for clinical decision-making and public health policies. As such, evidence-based medicine (EBM) is essential in identifying and evaluating scientific documents pertinent to novel diseases, and the accurate classification of biomedical text is integral to this process. Given this context, we introduce a comprehensive, curated dataset composed of COVID-19-related documents.

This dataset includes 20,047 labeled documents that were meticulously classified into five distinct categories: systematic reviews (SR), primary study randomized controlled trials (PS-RCT), primary study non-randomized controlled trials (PS-NRCT), broad synthesis (BS), and excluded (EXC). The documents, labeled by collaborators from the Epistemonikos Foundation, incorporate information such as document type, title, abstract, and metadata, including PubMed id, authors, journal, and publication date.

Uniquely, this dataset has been curated by the Epistemonikos Foundation and is not readily accessible through conventional web-scraping methods, thereby attesting to its distinctive value in this field of research. In addition to this, the dataset also includes a vast evidence repository comprising 427,870 non-COVID-19 documents, also categorized into SR, PS-RCT, PS-NRCT, BS, and EXC. This additional collection can serve as a valuable benchmark for subsequent research. The comprehensive nature of this open-access dataset and its accompanying resources is poised to significantly advance evidence-based medicine and facilitate further research in the domain.

Publisher: Elsevier, SoftwareX  Link>


CoTranslate is a web-based platform designed to efficiently label and review translations from language experts, with the aim of creating high-quality sentence-pair corpuses for training neural machine translation models. Utilizing Django backend and ReactJS frontend, the platform fosters collaboration among experts in translating and validating sentences. Focused on developing quality corpora, particularly for low-resource languages, CoTranslate addresses linguistic barriers and enhances translation quality. By streamlining the creation of robust training datasets, CoTranslate holds significant potential to impact the field of machine translation.

Publisher: Elsevier, Expert Systems with Applications  Link>


We present a study of an artificial neural architecture that predict human ocular scanpaths while they are free-viewing different images types. This analysis is made by comparing different metrics that encompass scanpath patterns, these metrics aim to measure spatial and temporal errors; such as the MSE, ScanMatch, cross-correlogram peaks, and MultiMatch. Our methodology begin by choosing one architecture and training different parametric models per subject and image type, this allows to adjust the models to each person and a given set of images. We find out that there is a clear difference in prediction when people free-view images with high visual content (high-frequency contents) and low visual content (no-frequency contents). The input features selected for predicting the scanpath are saliency maps calculated from foveated images together with the past of the ocular scanpath of subjects, modeled by our architecture called FovSOS-FSD (Foveated Saliency and Ocular Scanpath with Feature Selection and Direct Prediction).

The results of this study could be used to improve the design of gaze-controlled interfaces, virtual reality, as well as to better understand how humans visually explore their surroundings and pave a way to make future research.

Publisher: MDPI, Link>


Software Defined Networking (SDN) is a communication alternative to increase the scalability and resilience of microgrid hierarchical control. The common architecture has a centralized and monolithic topology, where the controller is highly susceptible to latency problems, resiliency, and scalability issues. This paper proposes a novel and intelligent control network to improve the performance of microgrid communications, solving the typical drawback of monolithic SDN controllers. The SDN controller’s functionalities are segregated into microservices groups and distributed through a bare-metal Kubernetes cluster. Results are presented from PLECS hardware in the loop simulation to validate the seamless transition between standard hierarchical control to the SDN networked microgrid. The microservices significantly impact the performance of the SDN controller, decreasing the latency by 10.76% compared with a monolithic architecture. Furthermore, the proposed approach demonstrates a 42.23% decrease in packet loss versus monolithic topologies and a 53.41% reduction in recovery time during failures. Combining Kubernetes with SDN microservices can eliminate the single point of failure in hierarchical control, improve application recovery time, and enhance containerization benefits, including security and portability. This proposal represents a reference framework for future edge computing and intelligent control approaches in networked microgrids.

Publisher: Elsevier, Knowledge-Based Systems Link>


This paper proposes a post-hoc explanation method for computing concept attribution in Fuzzy Cognitive Map (FCM) models used for scenario analysis, based on SHapley Additive exPlanations (SHAP) values. The proposal is inspired by the lack of approaches to exploit the often-claimed intrinsic interpretability of FCM models while considering their dynamic properties. Our method uses the initial activation values of concepts as input features, while the outputs are considered as the hidden states produced by the FCM model during the recurrent reasoning process. Hence, the relevance of neural concepts is computed taking into account the model’s dynamic properties and hidden states, which result from the interaction among the initial conditions, the weight matrix, the activation function, and the selected reasoning rule. The proposed post-hoc method can handle situations where the FCM model might not converge or converge to a unique fixed-point attractor where the final activation values of neural concepts are invariant. The effectiveness of the proposed approach is demonstrated through experiments conducted on real-world case studies.

Publisher: Elsevier, Pattern Recognition Link>


The paper presents the presumably correct decision sets as a tool to analyze uncertainty in the form of inconsistency in decision systems. As a first step, problem instances are gathered into three regions containing weak members, borderline members, and strong members. This is accomplished by using the membership degrees of instances to their neighborhoods while neglecting their actual labels. As a second step, we derive the presumably correct and incorrect sets by contrasting the decision classes determined by a neighborhood function with the actual decision classes. We extract these sets from either the regions containing strong members or the whole universe, which defines the strict and relaxed versions of our theoretical formalism. These sets allow isolating the instances difficult to handle by machine learning algorithms as they are responsible for inconsistent patterns. The simulations using synthetic and real-world datasets illustrate the advantages of our model compared to rough sets, which is deemed a solid state-of-the-art approach to cope with inconsistency. In particular, it is shown that we can increase the accuracy of selected classifiers up to 36% by weighting the presumably correct and incorrect instances during the training process.  

Publisher: ACM Transactions on Economics and Computation Link>


Algorithmic matching is a pervasive mechanism in our social lives and is becoming a major medium through which people find romantic partners and potential spouses. However, romantic matching markets pose a principal-agent problem with the potential for moral hazard. The agent’s (or system’s) interest is to maximize the use of the matching website, while the principal’s (or user’s) interest is to find the best possible match. This creates a conflict of interest: the optimal matching of users may not be aligned with the platform’s goal of maximizing engagement, as it could lead to long-term relationships and fewer users using the site over time. Here, we borrow the notion of price-of-anarchy from game theory to quantify the decrease in social efficiency of online algorithmic matching sites where engagement is in tension with user utility. We derive theoretical bounds on the price-of-anarchy and show that it can be bounded by a constant that does not depend on the number of users in the system. This suggests that as online matching sites grow, their potential benefits scale up without sacrificing social efficiency. Further, we conducted experiments with human subjects in a matching market and compared the social welfare achieved by an optimal matching service against a self-interested matching algorithm. We show that introducing competition among matching sites aligns the self-interested behavior of platform designers with their users and increases social efficiency.

agencia nacional de investigación y desarrollo
Edificio de Innovación UC, Piso 2
Vicuña Mackenna 4860
Macul, Chile