Buscar

Language Modeling on Location-Based Social Networks

RL5, Publisher: ISPRS International Journal of Geo-Information, Link >


Authors

Juglar Diaz, Felipe Bravo-Marquez, Barbara Poblete


Abstract

The popularity of mobile devices with GPS capabilities, along with the worldwide adoption of social media, have created a rich source of text data combined with spatio-temporal information. Text data collected from location-based social networks can be used to gain space–time insights into human behavior and provide a view of time and space from the social media lens. From a data modeling perspective, text, time, and space have different scales and representation approaches; hence, it is not trivial to jointly represent them in a unified model. Existing approaches do not capture the sequential structure present in texts or the patterns that drive how text is generated considering the spatio-temporal context at different levels of granularity. In this work, we present a neural language model architecture that allows us to represent time and space as context for text generation at different granularities. We define the task of modeling text, timestamps, and geo-coordinates as a spatio-temporal conditioned language model task. This task definition allows us to employ the same evaluation methodology used in language modeling, which is a traditional natural language processing task that considers the sequential structure of texts. We conduct experiments over two datasets collected from location-based social networks, Twitter and Foursquare. Our experimental results show that each dataset has particular patterns for language generation under spatio-temporal conditions at different granularities. In addition, we present qualitative analyses to show how the proposed model can be used to characterize urban places.

23 visualizaciones

Entradas Recientes

Ver todo

RL1, Publisher: Computer Vision for X-Ray Testing, Link > Authors Domingo Mery, Bernardita Morris Abstract Given a facial matcher, in explainable face verification, the task is to answer: how rele