Predicting affinity ties in a surname network

RL5, Publisher: PloS one, Link>


Marcelo Mendoza, Naim Bro


From administrative registers of last names in Santiago, Chile, we create a surname affinity network that encodes socioeconomic data. This network is a multi-relational graph with nodes representing surnames and edges representing the prevalence of interactions between surnames by socioeconomic decile. We model the prediction of links as a knowledge base completion problem, and find that sharing neighbors is highly predictive of the formation of new links. Importantly, We distinguish between grounded neighbors and neighbors in the embedding space, and find that the latter is more predictive of tie formation. The paper discusses the implications of this finding in explaining the high levels of elite endogamy in Santiago.

1 visualización

Entradas Recientes

Ver todo

RL2, Publisher: Journal of Machine Learning Research, Link> AUTHORS Jorge Pérez, Pablo Barceló, Javier Marinkovic ABSTRACT Alternatives to recurrent neural networks, in particular, architectures bas

RL2, Publisher: https://github.com/pdm-book/community Link> AUTHORS Marcelo Arenas, Pablo Barceló, Leonid Libkin, Wim Martens, Andreas Pieris ABSTRACT This is a release of parts 1, 2, and 4 of the